skip to main content


Search for: All records

Creators/Authors contains: "Lv, Jian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The anomalous nondipolar and nonaxisymmetric magnetic fields of Uranus and Neptune have long challenged conventional views of planetary dynamos. A thin-shell dynamo conjecture captures the observed phenomena but leaves unexplained the fundamental material basis and underlying mechanism. Here we report extensive quantum-mechanical calculations of polymorphism in the hydrogen–oxygen system at the pressures and temperatures of the deep interiors of these ice giant planets (to >600 GPa and 7,000 K). The results reveal the surprising stability of solid and fluid trihydrogen oxide (H 3 O) at these extreme conditions. Fluid H 3 O is metallic and calculated to be stable near the cores of Uranus and Neptune. As a convecting fluid, the material could give rise to the magnetic field consistent with the thin-shell dynamo model proposed for these planets. H 3 O could also be a major component in both solid and superionic forms in other (e.g., nonconvecting) layers. The results thus provide a materials basis for understanding the enigmatic magnetic-field anomalies and other aspects of the interiors of Uranus and Neptune. These findings have direct implications for the internal structure, composition, and dynamos of related exoplanets. 
    more » « less
  2. The successful fabrication of black phosphorene (Black-P) in 2014 and subsequent synthesis of layered black As 1−x P x alloys have inspired research into two-dimensional (2D) binary As–P compounds. The very recent success in growing blue phosphorene (Blue-P) further motivated exploration of 2D Blue-AsP materials. Here, using ab initio swarm-intelligence global minimum structure-searching methods, we have obtained a series of novel and energetically favored 2D Blue-AsP (denoted x-AsP, x = I, II, III, IV, V) compounds with As : P = 1 : 1 stoichiometry. They display similar honeycomb structures to Blue-P. Remarkably, the lowest-energy AsP monolayer, namely I-AsP, not only possesses a quasi-direct band gap (2.41 eV), which can be tuned to a direct and optimal gap for photovoltaic applications by in-plane strain, but also has an ultrahigh electronic mobility up to ∼7.4 × 10 4 cm 2 V −1 s −1 , far surpassing that of Blue-P, and also exhibits high absorption coefficients (×10 5 cm −1 ). Our simulations also show that 30 nm-thick I-AsP sheet-based cells have photovoltaic efficiency as high as ∼12%, and the I-AsP/CdSe heterostructure solar cells possess a power conversion efficiency as high as ∼13%. All these outstanding characteristics suggest the I-AsP sheet as a promising material for high-efficiency solar cells. 
    more » « less
  3. Monolayer MoS 2 has long been considered as the most promising candidate for wearable photovoltaic devices. However, its photovoltaic efficiency is restricted by its large band gap (2.0 eV). Though the band gap can be reduced by increasing the number of layers, the indirect band gap nature of the resulting multilayer MoS 2 is unfavorable. Herein, we report a theoretical discovery of the hitherto unknown symmetry-broken phase (denoted as 1T d ) of monolayer MoS 2 through a swarm structure search. The 1T d phase has a distorted octahedral coordinated pattern of Mo, and its direct band gap of 1.27 eV approaches the optimal value of 1.34 eV that gives the Shockley–Queisser limit for photovoltaic efficiency. Importantly, the direct band gap nature persists in thin films with multilayers owing to extremely weak vdW forces between adjacent 1T d layers. The theoretical photovoltaic efficiency at 30 nm thickness reaches ∼33.3%, which is the highest conversion efficiency among all the thin-film solar cell absorbers known thus far. Furthermore, several feasible strategies including appropriate electron injection and annealing methods were proposed to synthesize the 1T d phase. Once synthesized, the superior photovoltaic properties of the 1T d phase may lead to the development of an entirely new line of research for transition metal dichalcogenide solar cells. 
    more » « less
  4. Abstract

    This work describes a flexible and stretchable battery pack configuration that exhibits highly stable performance under large deformation up to 100% biaxial stretching. Using stress‐enduring printable inks and serpentine interconnects, the new screen‐printing route offers an attractive solution for converting rigid battery units into a flexible, stretchable energy storage device. Coin‐cell lithium ion batteries are thus assembled onto the island regions of a screen‐printed, buckling‐enabled, polymer‐reinforced interconnect “island‐bridge” array. Most of the strain on the new energy‐storage device is thus accommodated by the stress‐enduring serpentine structures, and the array is further reinforced by mechanically strong “backbone” layers. Battery pack arrays are assembled and tested under different deformation levels, demonstrating a highly stable performance (<2.5% change) under all test conditions. A light emitting diode band powered by the battery pack is tested on‐body, showing uninterrupted illumination regardless of any degrees of deformation. Moreover, battery‐powered devices that are ultrastable under large deformation can be easily fabricated by incorporating different electronics parts such as sensors or integrated circuits on the same platform. Such ability to apply traditionally rigid, bulky lithium ion batteries onto flexible and stretchable printed surfaces holds considerable promise for diverse wearable applications.

     
    more » « less